All results in Ch3 (on limits and computation rules) can be used except explicitly stated differently (in Q6*).

1. Let
$$r \in \{0,1\}$$
, and (X_n) a contractive
sequence with rate r :
 $|X_{n+2} - X_{n+1}| \leq r |X_{n+1} - X_n| \neq n \in \mathbb{N}$
Show that
 $(i) \quad \sum_{n=1}^{\infty} r^n = \frac{r}{1-r}$
 $(ii) \quad \sum_{n=1}^{\infty} X_n \text{ converges}$
 $(iii) \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \leq 2 \quad (\text{comparison with } 1 + \sum_{n=1}^{\infty} \frac{1}{2})^n)$
 $(v) \quad \sum_{n=1}^{\infty} \frac{1}{n^2} \quad (\text{ comparison with } (iii))$
2. Let $e_n = = (1 + \frac{1}{n})^n$, i.e.
 $e_n = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} (\frac{1}{n})^2 + \dots + \frac{n(n-1) + \dots + (n-k+1)}{k!} (\frac{1}{n})^k + \dots$
 $+ \dots + \frac{m(n-1) + \dots + (n-(n-2))}{(n-1)!} \cdot (\frac{1}{n})^n$
Show have $(e_n) \in n$ and bounded and
hence $e = \lim_{n \to \infty} e_n$ exists in $[1,3]$.

3. Show that
$$\lim_{n \to \infty} \frac{n^{100}}{(1+\epsilon)^n} = 0 \quad \forall \epsilon \geq 0$$

4. Fire early of the cases
(i) $x_1 = 1$,
(ii) $x_1 = 10$,
Show that $x_{\pm} = \lim_{n \to \infty} x_n exists in IR
(and determine the value of x), where
 $x_{n+1} = 2 + \frac{x_n}{2} \quad \forall n \in A$.
5. Let a 70. We know that $\sqrt{a} exists in'$
(0, ∞) (can you do this?). Below is
a "pratical way" to show not only its existence
but also a corresponding approximation/numerical
procedure. Pick $x_{1,70}$ such that $x_{1}^{2} \geq a$, and
define
 $x_{n+1} = = \frac{1}{2}(x_n + \frac{a}{x_n})$
(i) Show that if $x_{\pm} = \lim_{n \to \infty} x_n exists in (0, \infty)$
then $x = \frac{a}{x}$ (and so x is the (positive)
sq. root of a). By institution the limit x does exist !
(ii) Show that $x_{1,1} = \frac{1}{2}(x_{1,1} + \frac{a}{x_{1,1}}) \geq a$ because
 $(x_{1,1} - \frac{a}{x_{1,1}}) \geq a$.$